sam.nitk.ac.in

nitksam@gmail.com

Numerical Methods - MA 207 Numerical Differentiation

1. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.2 and x = 1.6, for the following table of values of x and y.

x	1	1.2	1.4	1.6	1.8	2	2.2
y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

2. Find the first and second derivatives of the funciton y = f(x) tabulated below at the point x = 1.1.

x	1	1.2	1.4	1.6	1.8	2
y = f(x)	0	0.128	0.5450	1.2960	2.4320	4

3. Using the following data, find f'(5).

x	0	1	2	3	4	5
y	0	0.25	0	2.25	16	56.25

- 4. Given the values of an empirical function f(x) for certain values of x. Find
 - (a) *f*′(93)
 - (b) the value of f(x) for which f(x) is a maximum,
 - (c) the maximum value of f(x) in the range of x.

x	60	75	90	105	120
f(x)	28.2	38.2	43.2	40.9	37.7

5. Compute f'''(5) given

x	2	4	9	13	16	21
f(x)	57	1345	66340	402052	1118209	4287844

6. Prove that, the *k*th derivative of f(x) is

$$f^{(k)}(x) = \frac{1}{h^k} \frac{d^k}{dp^k} (1+\Delta)^p f_0.$$

Derive

- (a) Newton's forward formula for first derivative (general form) and for $f'(x_0)$.
- (b) Newton's backward formula for first derivative (general form) and for $f'(x_n)$.
- 7. Compute f' and f'', from the following table, at

(a) x = 16 (b) x = 15 (c) x = 24 (d) x = 25.

x	15	17	19	21	23	25
$f(x) = \sqrt{x}$	3.373	4.123	4.359	4.583	4.796	5

- 8. Given $u_0 = 5$, $u_1 = 15$, $u_2 = 57$, and $\frac{du}{dx} = 4$ at x = 0 and 72 at x = 2. Find $\Delta^3 u_0$ and $\Delta^4 u_0$.
- 9. The population of a certain town is shown in the following table.

Year (<i>x</i>)	1931	1941	1951	1961	1971
Population (<i>y</i>)	40.62	60.80	79.95	103.56	132.65

Find the rate of growth of the population in 1961.

10. A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod has turned for various values of time *t* (in seconds). Calculate the angular velocity $\left(\frac{d\theta}{dt}\right)$ and angular acceleration $\left(\frac{d^2\theta}{dt^2}\right)$ of the rod when t = 51 seconds.

t	50	60	70	80	90
θ	19.96	36.65	58.81	77.21	94.61

11. Find the gradient of the road at the starting point of the elevation above a datum line of 7 points of a road which are given below.

ſ	x	0	300	600	900	1200	1500	1800
	y	135	149	157	183	201	205	193

12. Find the maximum and minimum values of *y* from the following table.

x	0	1	2	3	4	5
y	0	1/4	0	9/4	16	225/4
